
1. Introduction
Percolation analysis has been recently applied in archaeol-
ogy for identifying clusters and groupings at a national 
scale, for example investigating the distribution of hill-
forts in Britain and Ireland (Maddison 2019) and Domes-
day sites in England in 1086 AD (Arcaute et al. forthcom-
ing). The technique, originally developed in physics and 
more recently adopted in geography (Arcaute et al. 2016) 
is a way of identifying groupings or clusters, purely based 
on spatial separation using Euclidian distance. The above 
analyses for British Hillforts and Domesday sites have 
shown this to be a fruitful starting point for investigat-
ing possible past socio-political entities and patterns of 
deep history. The technique has now also been applied 
to features at a sub-regional level, in Saxony-Anhalt, cen-
tral Germany, with the different objective of identifying 
settlement sites along a 13 km strip excavation. The aim 
here was to arrive at estimates of settlement sizes, in order 
to inform landscape archaeological surveys for deciding 
either on the attribution of single finds to an already 

known site or registering a new site. This paper provides 
a summary of the percolation analysis method, compares 
it to other known cluster algorithms in archaeology and 
then provides two detailed case studies where the tech-
nique is applied at significantly different geographical 
scales. This will demonstrate not only the potential for the 
technique within archaeology, particularly as an explora-
tory tool, but also how it can be applied at different spatial 
scales with distinct objectives appropriate to the specific 
problem in question.

2. Methodology
Percolation analysis is a technique for identifying clus-
ters within a set of spatially arranged points. The compu-
tation is based on the Euclidian distance between those 
points. It was first developed in physics in the 1940s to 
describe polymer formation processes and the percola-
tion of a liquid through a solid body; it has since been 
used for a wide range of applications and analyses (e.g. 
Frisch and Hammersley 1963; Stauffer and Aharony 
1991). A ready example is the propagation of blight 
through an orchard, where disease will spread from tree 
to tree within a cluster, when the trees are close enough 
together, but at a critical density when all the trees form 
a single cluster it can spread to the orchard limits (Frisch 
and Hammersley 1963). A cluster is based on a defined 
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distance threshold, so that for any given point all neigh-
bouring points falling within this threshold are part of 
the cluster. The test is then re-applied for each of these 
neighbours in turn, and any further points meeting this 
criterion are also part of the cluster. This technique can 
be applied at any scale, from the molecular to the geo-
graphical and beyond. 

Recently it has been used in geography to identify 
metropolitan areas, based on population density. The 
City Clustering Algorithm (CCA) has been developed out 
of percolation theory by Rozenfeld et al. (2008) based 
on distance within a cellular lattice; it has been further 
developed by Rozenfeld et al. (2011) to use the Euclidean 
distance between points. The technique is illustrated in 
Figure 1, where an arbitrary point is selected as a start 
and any point falling within a defined threshold dis-
tance ‘r’ becomes part of the cluster; the process is then 
re-applied to each of these points in turn, until the clus-
ter can extend no further. This threshold distance is also 
known as the ‘percolation radius’ and this term is gener-
ally used below. Arcaute et al. (2016) have adopted this 
technique for defining urban areas, using the density of 
street interconnections rather than population. 

They have also developed analytical techniques for iden-
tifying transition points in cluster growth as the distance 
threshold is progressively increased, as discussed further 
below. Note that the method has evolved from statisti-
cal techniques in materials science, where it is applied 
to sets of spatially distributed points which are identical 
and where there is no interest in distinguishing between 
them. However, when used in archaeology there is poten-
tially a very great interest in the individual points, reflect-
ing as they do distinct archaeological entities, as will be 
shown later. 

The algorithm, which was developed by Elsa Arcaute in 
R, has been adapted for archaeology by Simon Maddison 
and is now available as an R package under DOI 10.17605/
OSF.IO/7EXTC. A detailed description of the code package 
is included at the end of this paper.

2.1. Comparison to other Clustering Algorithms
A number of spatial clustering algorithms are known in spa-
tial data mining (Neethu and Surendran 2012; Varghese, 
Unnikrishnan and Jacob 2014). The one mostly used in 
archaeology has been the k-means non-hierarchical clus-
tering algorithm. It was developed in the 1950s and 60s 
and popularised in archaeology by Kintigh and Ammer-
man in 1982 (Baxter 2015b: 148; Kintigh and Ammerman 
1982). This algorithm has been applied widely in archae-
ology during the last 40 years (Baxter 2015c; e.g. Enloe, 
David and Hare 1994; for overviews see: Koetje 1994; 
Ladefoged and Pearson 2000; Lemke 2013; Savage 1997),  
probably because of its ease of use and understanding 
(Ducke 2015: 360): initially the whole data set is consid-
ered as one cluster and the centre of this cluster is deter-
mined. The point farthest from this centre is then used as 
a centroid for a new cluster and attracts those points to 
its cluster that are nearer to it than to the original cluster. 
Step by step the algorithm determines new cluster centres 
and allocates each point into one of k clusters in such a 
way that the sum-squared error (SSE) is minimized. The 
SSE is the sum of the squared distances from each point 
to the centre of the cluster to which it is assigned (Kintigh 
1990: 185). By minimizing global sum-squared errors the 
algorithm tends to create circular clusters (Kintigh 1990: 
190). This problem has been described by Baxter as the 
“well-advertised ‘problem’ of k-means”. He continues “it 
tends to produce circular clusters that don’t necessarily 

Figure 1: Percolation of a small cluster of points. A radius is drawn around a random point; if another point falls into 
this radius, it is now “infected” and in turn a radius is drawn around it. If no more points fall within that radius, the 
cluster is defined.

https://doi.org/10.17605/OSF.IO/7EXTC
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respect the observable ‘geometry’ of a point scatter, [this] 
can be understood as a consequence of its close relation-
ship to a model-based methodology that is optimal if 
clusters are spherical and of equal size.” (Baxter 2015c: 3). 
Ducke focuses on the centroid-centred approach of this 
model and sees the result of k-means as a complete and 
overlap-free partitioning of the space, which corresponds 
to Voronoi-diagrams. Voronoi-diagrams partition space 
according to the Euclidean distance and draw borders 
exactly in the middle between two centroids (Nakoinz and 
Knitter 2016: 98). According to Ducke, this is a “limita-
tion” (Ducke 2015: 360–61). Baxter, on the other hand, 
concludes: “If clusters are tightly-defined and well-sepa-
rated there is not a problem; a representation in terms of 
convex hulls rather than Voronoi diagrams will emphasise 
that there is plenty of empty unoccupied space” (Baxter 
2015c: 18). Two other points of critique have been the 
need to define the number of clusters (k) that are being 
created beforehand and that noise is not excluded from 
cluster allocation, problems Ducke and Baxter agree on 
(Baxter 2015c: 18; Baxter 2015a: 161; Ducke 2015: 361). 

To address some of the problems of k-means and asso-
ciated algorithms, as highlighted from Kintigh (1990) to  
Ducke (2015) and in part mitigated by Baxter (2015c), 
Jendryke and Caspari (2017) developed Archsphere as an 
archaeological cluster algorithm. They integrate structural 
parameters, which were recorded along with the spatial 
information of the features under investigation. Because 
they mainly analysed round structures, the features were 
weighted using the diameter, though other parameters 
might be used (Jendryke and Caspari 2017: 182). This 
weighting of the influence of the features after archaeo-
logical pre-consideration was implemented to mitigate the 
effect of different densities in the same data set (Jendryke 
and Caspari 2017: 182). Around each feature a sphere is 
constructed, whose size is based on the weighting factor. 
Two features will be in the same cluster if their spheres 
touch or overlap. The clustering algorithm starts at an 
arbitrary node, checks all neighbours (touching spheres) 
and stops only when no new neighbours are found. Inputs 
needed for the algorithm are a minimum number of 
points for a cluster and the weight (Jendryke and Caspari 
2017: 184). This is not considered by the authors to be a 
“generic cluster algorithm but a specific method to divide 
landscape archaeological datasets into sub-entities for 
further analysis assuming that spherical structuring domi-
nates the data” (Jendryke and Caspari 2017: 186).

Less well known and somewhat similar to percolation 
analysis, in using a radius as measurement for spatial dis-
tance, are the ‘density-based spatial clustering of applica-
tions with noise’, coined DBscan (Ester et al. 1996) and the 
local Ripley’s K-function (Getis and Franklin 1987). DBscan, 
similarly to percolation, uses a radius, which is called the 
Eps (ε) -neighbourhood of a point, to determine whether 
other points fall into the same cluster (Ester et al. 1996: 
227). Points that lie directly in the Eps-neighbourhood 
of the starting point are called ‘density-reachable’. They 
will belong in the cluster and themselves become points 
from which to draw an Eps-neighbourhood. Other points 
reached by those, are called ‘density-connected’. This dif-
fers from percolation in that core points and border points 

are differentiated. Core points are defined as having more 
points in their Eps-neighbourhoods than border points 
(Ester et al. 1996: 228). The minimum number of neigh-
bouring points needed to define a core point is one of the 
inputs needed for the DBscan algorithm. DBscan begins 
with an arbitrary point (seed), looks for density-reachable 
points and if the criterium of minimal number of points 
for the creation of a core point is met, connects all points 
that are density-reachable and then moves to the next 
point. Noise consists of points that cannot be connected 
to other points in this way (Ester et al. 1996: 229). If the 
minimal number of points for a core point is set to only 
two, the DBscan algorithm has empirically the same out-
put as percolation analysis. In archaeology-related con-
texts DBscan has been used e.g. by Argote‐Espino et al. 
(2012). The discussion of its usefulness varies: Whereas 
Ducke (2015: 363–364) favours it over k-means, Baxter 
(2015c: 16–19) is not convinced it offers better solutions.

Ripley’s K function is best known as a multi-scalar clus-
ter detection algorithm. The measure K describes the dis-
tribution of inter-point distances (Ripley 1976: 260). Its 
graph shows the cumulative average number of points 
lying in a certain radius (window) of a typical data point. 
This is compared with an expected point count under the 
assumption of a poisson process to determine at which 
radii the empirical distribution either clusters, is regularly 
spaced or random (Baddeley, Rubak and Turner 2015: 
203–208; Ripley 1976). This global Ripley’s K-function 
has been used widely in archaeology (e.g. Bevan and 
Conolly 2006; Palmisano 2013; Sayer and Wienhold 2013). 
Its variant, the local K-function analysis, focuses on where 
significant clustering occurs by rewriting the function for 
each point i (Getis and Franklin 1987). This was further 
modified by adding a Monte Carlo simulation, which may 
indicate significance of clustering at a point i at a certain 
scale (Smith 2016: I.4-22), using the hypothesis of com-
plete spatial randomness (CSR). The output is a matrix of 
p-values at each point and each distance value, which may 
be mapped (Smith 2016: I.4-23–24). In distinction to per-
colation analysis, the density of points for a certain radius 
is calculated and a probability of belonging to a cluster 
given. It has not yet been used extensively in archaeology; 
examples are Crystal Safadi’s M.Sc. thesis (Safadi 2013) 
and Pillot and Saligny (2013).

Other algorithms, such as nearest neighbour and the F- 
and G-functions, are clustering detection algorithms that 
indicate whether the point distribution is spatially clus-
tered, but they do not directly give an attribution of points 
to a certain cluster. 

Ducke formulated the following parameters for a use-
ful spatial cluster detector: its mathematical core should 
be simple, so that archaeologists can understand why a 
certain input leads to a certain output; it should assume 
as little as possible about the clustering structure (i.e. 
the number, sizes and locations of clusters); it should be 
robust against noise, for example it should just ignore the 
odd scattering of sherds around the clusters; it should 
not assume that every point is indeed part of a cluster, it 
should either assign each point to a cluster or classify it as 
noise; and finally, it should always produce the same result 
when given the same input data (Ducke 2015: 357–358).
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We think percolation analysis satisfies these desiderata 
well, as its mathematical core is simple; the size, number 
and location of clusters is explored and not predeter-
mined; it will include outliers only at very late stages of 
the clustering process (which is easily detected and may 
be excluded from analysis results if so desired); and the 
results for a given dataset are always the same. It is an 
effective and practical spatial analysis tool for the archae-
ologist (Maddison 2020) and especially interesting for 
exploratory research.

We believe percolation analysis to be a worthy contribu-
tion to the toolkit of clustering algorithms for archaeolo-
gists because it is easily understandable and applicable. 
Available in the free and open source scripting language 
R, it is readily accessible for any researcher who might 
wish to utilise it. A description and link to the code are 
provided at the end of this paper.

3. Case Studies
3.1. Hillforts in Britain
Working with data from the ‘Atlas of Hillforts’ (Lock and 
Ralston 2017), it was decided to use percolation analysis 
to explore and establish any intrinsic groupings of hill-
forts that might exist in Britain and Ireland. Once iden-
tified, these groupings could then be compared with 
topography and geographical regions, as well as other his-
torical data sets, and further analysed with data from the 
Atlas. The Atlas dataset comprises 3007 confirmed sites in 
Britain and 347 in all of Ireland. Percolation analysis was 
applied in radius increments of 1km. The cluster transi-

tions for Britain are shown in Figure 2, which plots the 
normalized maximum cluster size (with a normalized size 
range of between 0 and 1.0) against percolation radius. 
Selected cluster plots are overlaid for illustration. For 
large radius values all sites will form a single cluster while 
for progressively smaller radii, the clusters start to break 
up, and this transition diagram is an indicator of where 
potentially interesting clusters become visible. For small 
radius values no clusters form at all, whilst the most nota-
bly obvious transition occurs at 34 km as most sites join a 
single very large cluster. 

Geographical plots of clusters are shown in Figures 
3 to 5. Clusters are ranked by size and allocated a col-
our, with red being the largest cluster and blue the next; 
below rank 15 all sites are plotted as grey, and sites not 
in a cluster (i.e. noise) have a cross symbol. Above 35 km 
radius value all sites form a single large cluster, except 
for the Isle of Man and the island groups Hebrides, 
Shetlands, and Scillies. Apart from south-east Scotland, 
the most interesting transitions occur in the 6–14 km 
range. Within England, as the radius values reduce, sites 
in the Pennines and the east progressively break out of 
the bigger cluster, and at 14 km (Figure 3), the south-
west peninsula forms its own cluster in Cornwall and 
part of Devon, and other clusters appear in the south-
east. The plot for 12 km (Figure 4) shows for example 
Cornwall and Devon/part of Somerset as individual 
clusters, and a cluster along the Chilterns. The plot for 
9 km (Figure 5) shows clusters in north-west Wales, the 
Clwydian Range, south-west Wales, the Gower, central 

Figure 2: Cluster transition diagram, showing the maximum cluster size (normalised) vs. percolation radius, for hillforts 
in Britain.
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Figure 3: Percolation clusters of hillforts in Britain at 14 km radius.
Source: Atlas_of_Hillforts_GB_IoM_coords. 170725.csv; percolation distance: 14 km.
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Figure 4: Percolation clusters of hillforts in Britain at 12 km radius.
Source: Atlas_of_Hillforts_GB_IoM_coords. 170725.csv; percolation distance: 12 km.
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Figure 5: Percolation clusters of hillforts in Britain at 9 km radius.
Source: Atlas_of_Hillforts_GB_IoM_coords. 170725.csv; percolation distance: 9 km.
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Wales and the Marches and two clusters on the north-
west and the south-east of the Severn Valley, the latter 
being the Cotswolds group. To illustrate, three clusters 
are shown plotted on a terrain model, which suggests 
a regional coherence and strong correlation with the 

local topography. The cluster in Central Wales at 6 km 
radius (Figure 6) shows hillforts on the hills above the 
valley of the river Severn and its tributaries as it comes 
down to the Shropshire plain. The Cornwall cluster at 
12 km (Figure 7) shows sites in the peninsula, clearly 

Figure 6: Central Wales hillfort cluster at 6km radius overlaid on terrain model with the River Severn and its main 
tributaries.

Figure 7: The Cornwall hillfort cluster at 12 km radius, overlaid on a terrain model, with principal rivers.
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bounded by Dartmoor to the east and the river Tamar. 
The Cotswold cluster at 6 km (Figure 8) shows the hill-
forts along the escarpment overlooking the Severn valley 
with some sites close to the river, particularly where it 
joins the river Avon. These three examples are on quite 
distinct geographical terrains; they illustrate the poten-
tial for identifying clusters for further detailed regional 
study utilising other sources of data. This has been 
started (Maddison, 2019), and is an ongoing project. 

It is clear from the above discussion that the formation 
of clusters is very dependent upon the density of sites. 
In high density areas, clusters form at lower percolation 
radius values as compared with low density areas where 
the clusters form at higher radius values. In areas of high 
site density such as south-west Wales and south-east 
Scotland, then a finer grained analysis with radius incre-
ments of 0.1 km reveals more localised cluster patterns in 
the range 3–7 km radius values, for example see Figures 

Figure 8: The Cotswolds hillfort cluster at 6 km radius, overlaid on a terrain model, with the rivers Wye, Severn, Avon 
and Thames.

Figure 9: Southern Scotland hillfort clusters at 3.7 km radius.
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9 and 10. In both these regions the size of hillforts is 
much smaller than in less dense areas such as Wessex, so 
may reflect different social and political structures and 
hillfort roles. Further study is required to establish what 
significance these clusters might have. 

3.2. Strip excavation in Germany
The second case study is located in Saxony-Anhalt, cen-
tral Germany. During the early 2000s the ‘Bundesstraße 
6’ road was built near the town of Köthen. The area of 
the main road, approach roads, exits and retention reser-
voirs were machine test-trenched and excavated by Her-
itage Management Saxony-Anhalt to find archaeological 
sites (see Figure 11). Along the ca. 13 km long and mostly 
40 m wide location of the road, over 6000 features were 
uncovered (Fahr in preparation), but this paper will focus 
on features from the Late Bronze Age (‘Saalemündungs-
gruppe’). For this period the aim is to find the clusters 
which delineate a site with the help of percolation analy-

sis. The radius will estimate the distance between features 
that belong to a single site.

There are 1006 settlement features catalogued as 
belonging to this period (see Figure 12).

Because of the test trenching, it is assumed that all 
features and sites along the transect have been found, 
even though there are gaps between the actual excava-
tion areas and many features remain undated. Machine 
trenching has been shown to be the most effective way to 
find sites (Hey 2006).

The term “site” has been at the centre of a lively debate in 
survey archaeology over the last 40 years. Until the 1970s 
it was mostly defined as a place (Dunnell 1992: 23–24) 
– a find spot, which is similar to the German definition, 
where the term ‘Fundplatz’ means exactly that. In German 
archaeological inventories, though, a site may contain sev-
eral culturally distinct loci, ‘Fundstellen’ (Dauber 1950: 
96), which are usually catalogued as a settlement, a burial 
ground, a hoard or as a single find spot of a particular 

Figure 10: Wales hillfort clusters at 5.1 km radius.
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period (Eggert 2005: 56). Two questions arise when decid-
ing how to classify a site as a settlement: qualitatively, 
what kind of finds or features define a settlement (Linke 
1976: 8), and quantitatively, how far apart two ‘find spots’ 
are supposed to be. If two sherds of the same time period 
are found 50 m apart – are they from two sites or do they 

belong to one site? In every larger settlement or landscape 
archaeological study this topic is being discussed and in 
the end a decision reached, which the authors agree is 
arbitrary and should actually rely on empirical studies 
(Malmer 1962: 258; Mischka 2007: 49–50). This is the 
question this case study aims to answer.

Figure 12: Excavation sites delimited by the Heritage Management Saxony-Anhalt, green points denoting Late Bronze 
Age features in the transect (overlapping).

Figure 11: Road excavation, sites delimited by the Heritage Management Saxony-Anhalt. Residential areas marked by 
stripes. Background: DEM by State Agency for Surveying and Geoinformation Saxony-Anhalt.
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Since the middle of the 1970s there has been discussion 
of a non- or off-site approach in anglophone archaeology. 
The terms were introduced by Thomas (1975) and Foley 
(1981) and describe the analysis of finds ‘between sites’. 
This approach interprets the archaeological record as a 
continual distribution in space, with spots of higher den-
sity, the so-called ‘sites’, and areas of lower density (Wobst 
1983: 39).

At this point the continuously excavated data set of the 
road and the percolation clustering analysis can be fruit-
fully combined: As percolation works with radii around 
points it may assist in quantitatively assessing which 
distances between features are common and at what 
distance features do not seem to belong to each other 
anymore. This question needs to be answered for each 
archaeological culture separately, as we cannot assume 
similar settlement distributions through time (Schirren 
1997: 30).

Assuming a connection between sub-surface features 
and surface finds enables us to associate the distances 
between features to those of finds; this can inform land-
scape archaeological surveys on the decision to attrib-
ute single finds to an already known site or registering 
a new site. Of course, settlement features only comprise 
the ‘built space’ of a settlement. Although features in-
between sites may exist, such as traps or temporary stor-
age facilities, places such as working areas or fields which 
may be detected by off-site surface find distributions and 
will not be included.

3.2.1. Percolation analysis
As this analysis is concerned with a very fine level of detail, 
the starting point and the step size of the percolation algo-
rithm was chosen to be 1 m. As the size of a prehistoric 
village in central Germany cannot be assumed to be larger 
than a kilometre in diameter, the largest radius used was 
500 m (see following Figure 13).

There are several levels of clustering. Features of the 
Late Bronze Age create a steep curve in the beginning, 
which shows a close clustering at low percolation radii 
(as an example of this, see Figure 14 for a percolation 
radius of 5 m). Longer stretches of flattening might be 
interpreted as the algorithm running out of features to 
add to the clusters. If we define a settlement as a clus-
ter of features, we can take the values before a flattening 
to show at which radius no more features are added to a 
cluster and thereby suggest the edges of settlements. The 
step rises at higher percolation radii also need explana-
tion. To provide these, the results will be compared to a 
large-scale excavation of a Late Bronze Age site in central 
Germany. 

As in the example above, the maps generated show only 
the 15 largest clusters, marked in colour. In Figure 14 
the clusters that develop at a percolation radius of 5 m 
are depicted for the north-western part of the excava-
tion. There the densest concentration of Late Bronze Age 
features has been uncovered. In Figure 14 one can see a 
number of small clusters and a number of points not yet 
belonging in any cluster (marked with a cross). Note that 
the size of the cluster is determined by the numbers of 
features inside the cluster, not by its geographical spread.

The most distinctive steps of the continuous perco-
lation analysis in the distribution are highlighted in 
Figure 13. We can see the radii after which the algo-
rithm does not change the cluster size for some time, 
showing that stretches of space between features exist 
here. The turning point of the mean cluster sizes is at 
the radius of 68 m. In Figure 15 the north-western part 
of the transect is shown with the results of different 
percolation analyses. At the radii of 5, 10 and 20 m the 
clusters grow considerably in size, without necessarily 
merging. This illustrates the steep rise of the curve in 
Figure 13 at low percolation values. The differences 
between the clusters at radius values of 46 m, 68 m and 

Figure 13: Percolation radius and mean cluster size of the transect excavation at Köthen, central Germany. Clustered 
strip excavation plots in the background correspond to the marked percolation radii.
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88 m are not as significant. At these percolation radii, 
two larger pre-existing clusters are merged, which leads 
to an increase of the mean cluster size value as depicted 
in Figure 13.

3.2.2. Interpretation
The Late Bronze Age features are mostly concentrated 
in the western half and on the eastern-most part of the 
transect, which is why the north-western part of the tran-
sect has been chosen for illustration (Figures 14 and 15). 
As can be seen by the rapidly rising graph describing the 
mean cluster size in relation to the percolation radius 
in Figure 13, the features cluster closely. The first steps 
in the distribution can be seen at 46 m, 68 m and 88 m. 
These are the distances at which the clusters ‘stabilise’ and 
do not grow with increasing percolation radii. As men-
tioned above, the mean width of the excavated strip was 
40 m. Therefore, it is assumed that the first ‘stabilisation’ 
is due to the lack of features beyond the edges of the exca-
vation area.

The largest excavation site of the Late Bronze Age in 
central Germany is found in Zwenkau(-Eythra) in Saxony, 
which was excavated in advance of coal mining. At 
Zwenkau several single farmsteads delimited by houses 
and fences spread over the whole excavation area, which 
measures at its greatest dimensions 1100 × 825 m (Huth 
and Stäuble 1998: 194–213). The farmsteads in Zwenkau 
do not overlap (Huth and Stäuble 1998: 214) and the dis-
tances between them are quite diverse. Nonetheless a 
number of them seem to scatter at intervals of ca. 65–75 

m. (cf. Huth and Stäuble 1998: 216, fig. 6). The farmsteads 
themselves are not all the same size, but the longest sides 
are about 50–85 m long (cumulating to sizes of 2000–
2500 m²) (Huth and Stäuble 1998: 213). It is assumed that 
not all of them existed at the same time, but that there 
were always several isolated farmsteads in a scattered dis-
tribution relative to each other (Huth and Stäuble 1998: 
214).

At the analysed transect excavation we also deal with a 
depth in time, as there are overlapping features and sev-
eral ditches, which most probably did not exist at the same 
time but can be interpreted as evidence of small-scale 
settlement shifts (see Schmidt 2019). We can therefore 
assume that at least in part the high density of settlement 
features belonging to the Late Bronze Age might be inter-
preted as evidence of several phases or local re-settlement. 
Nevertheless, we can note that the turning points of the 
radius values at 68 m falls well within the range of the 
farmstead sizes of Zwenkau-Eythra and might be a pos-
sible farmstead site delimiter revealed by the percolation 
algorithm.

Two points can be noted here. Firstly, even though the 
transect only reveals a “slim” window into the archaeo-
logical record, the percolation analysis reveals a pattern, 
which is similar to that recorded on large-scale excava-
tions. It therefore shows this to be a useful approach.

Secondly, taking the measure from percolation as a 
guide, we suggest that as long as the next feature is within 
approximately 68 m, features seem to belong to the same 
cluster. We can therefore assume that Late Bronze Age 

Figure 14: North-western end of the strip excavation at Köthen. Clusters that develop at a 5 m radius are shown. The 
points for the Bronze Age features are overlapping.
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finds within such a distance to each other belong to the 
same site. This is not to be understood as a general rule for 
all Late Bronze Age settlements everywhere, but rather as 
a rule of thumb for survey archaeology in this particular 
region.

Of course, if a survey misses a find and the find density 
is so low that no other was found in proximity, two find
spots belonging to the same site might not be identified 
as such. This problem cannot be mitigated by a cluster 
algorithm, as it is a data issue.

Mapping the clusters (see Figures 14 and 15) reveals 
a more complete picture: As the percolation algorithm 
moves from node to node, the cluster groups are much 
larger than the radii. The sites therefore do not consist of 
single farmsteads, but are conglomerations of these. 

In this way, the question posed by Malmer (1962) and 
Mischka (2007) on how to define the distance between two 
findspots before delimiting a new site has been answered 
in an empirical fashion. A similar analysis applied to dif-
ferent and larger data sets might shed further light on the 
stability of this interpretation.

4. Conclusion
In this paper percolation analysis was used for two very 
different archaeological applications and goals at widely 
different spatial scales. It was applied in Great Britain 
to investigate the distribution of hillforts, using data at 
a national, pan-regional scale. The objective was to start 
with the data, namely the spatial dataset of hillforts, and 
identify possible territorial groupings purely based on 
their spatial distribution. No assumptions were made as to 
modern or historical administrative or political bounda-
ries, so the technique was applied very much in an explor-

atory way. Clear groupings have been identified, and some 
of these have been selected for further detailed analysis, 
for comparison with other sources of data (such as histori-
cal county boundaries for example), and utilising other 
attributes such as architecture, size and dating. Where 
these different sources support each other, it strengthens 
the case for their indicating prehistoric socio-political ter-
ritories. 

In contrast, the second application was at a sub-regional 
level. Features excavated along a transect were clustered 
to find relevant sizes of settlements of the Late Bronze 
Age in central Germany. These may be used as indicators 
of how far apart two findspots should be to delimit two 
different sites. It is suggested here that two finds should 
have, as a guideline, a distance of at least 68 m between 
each other for them not to belong to the same site.

In conclusion, percolation analysis offers a fruitful 
and easily approachable cluster algorithm, which lends 
itself well to archaeological middle range theory. It is 
applicable at different scales and may answer a variety 
of research questions. As it is exploratory in nature, it 
demands almost no assumptions, just the range of radii 
that are to be explored needs to be determined before-
hand. Also, while Euclidian distance has been utilised in 
the examples shown here, the application to least-cost 
research questions is possible as well. With regards to 
Ducke’s desiderata for cluster algorithms in archaeology, 
percolation analysis as implemented in our R-package 
offers an easy to understand alternative to more com-
plex algorithms, such as DBscan and local Ripley’s K. The 
assumptions are minimal, and the algorithm dependably 
identifies clusters and noise at different scales. The form 
of the clusters is not relevant, which sets it off positively 

Figure 15: Details of percolation analyses of the north-western end of the transect at different radii. The scale given is 
relevant for all six maps.
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against e.g. the k-means algorithm which tends to create 
round clusters.

It is our belief that percolation analysis should be a 
standard part of the spatial analysis toolkit for archae-
ologists (see for example Gillings, Hacıgüzeller and Lock 
2020) and that the examples given here are an effective 
demonstration of its value and flexibility.

Percolation Analysis: detailed description of 
the R code
The program suite, along with a sample program and 
test data can be found and downloaded in Open Access 
from:
DOI 10.17605/OSF.IO/7EXTC.
The code, written in R, applies a spatial clustering process 
to a spatial point data set. 
The percolate() function processes this data set to gener-
ate the clusters for a range of percolation radius values. It 
also generates and stores a set of data tables for use by the 
other functions, as well as optional external processing, as 
described below. 
mapClusters() prints maps of the generated clusters, 
overlaid on a given shape file.
plotClustFreq() plots analysis results for the clusters 
showing the key characteristics of the clusters generated 
for a given point data set.

A working directory path needs to be defined before run-
ning the functions. The functions will create the following 
sub-directories off this path:
/working_data – where the generated data tables are 
stored
/analysis_results – where the analysis results and the plots 
are stored 
/maps – where the generated output maps are stored

It is suggested that /source_data and /shape_files directo-
ries are also created.

Graphical outputs are generated as png files with an A4 
format. 

Percolate
percolate(data,distance_table,upper_radius, lower_
radius, step_value, limit, radius_unit)
The data needs to be provided as a dataframe in the for-
mat below:
PlcIndex,Easting,Northing
The PlcIndex field is a provided identity for each point, 
which is specified by the coordinates. The resolution of 
the coordinates is assumed to be in metres.

In addition to the spatial data, parameters are passed to 
the percolate function as below:
distance_table is normally set to NULL. This dataframe 
needs to be provided if you wish to use the analysis with 
your own inter-point distances, for example least-cost 
path or weighted distances. 
upper_radius is the upper value of the radius range to be 
used, scale is m * radius unit.

lower_radius is the lower value of the radius range to be 
used, scale is m * radius unit.
step_value is the step value to be used between these 
two values, scale is m * radius unit (NOTE: this value can 
be decimal, e.g. 0.2).
limit is the value above which distances between sites 
will not be stored, scale is m * radius unit. This is typi-
cally above the value at which all points are within a single 
cluster.
radius_unit is the scale for computing the radius val-
ues. The assumption is that coordinates are in metres. A 
value of 1000 computes the radius in km, a value of 1 in 
metres etc.

As an example, the upper_radius is 40, the lower_radius 
is 2, the step value is 1, the limit is 50 and the radius unit 
is 1000, i.e. it sets all the above values to km. ‘data’ is a file 
containing the point data and identifier.

The first function to be called, with example parame-
ters, is:
“percolate(data, ,  40, 2, 1, 50, 1000)”

The percolate program first computes an inter-point dis-
tance matrix. Given the dataset of points and XY coordi-
nates, it computes a partial matrix of inter-point Euclidean 
distances using Pythagoras’ theorem. The limit parameter 
sets the maximum value stored, in this case to 50 km. 
For example, with a spatial dataset covering the whole of 
Britain, there is little point in storing the distance between 
points at the extremes of the country. This reduces the data 
file sizes and speeds up data file handling. The distance for 
each pair of points is computed and stored only once. 

The inter-point distance table comprises a data frame 
consisting of: first point identity; second point identity; 
the distance between them, all rounded to two deci-
mal places of the unit value. This is stored as a space 
delimited text file called ‘nodes_list_d.txt’. The format is 
comma separated with columns:
ID1,ID2,d12 – the identifiers for point 1, point 2 and the 
distance between them.

Duplicate and null entries are identified, and if present 
these data points are stored in space delimited text files, 
‘duplicate_entries.txt’ and ‘null_entries.txt’.

The inter-point distance data is used to generate the clus-
ters. However, if so desired, a distance matrix may be pro-
vided to the program. So, for example, weighted values may 
be used rather than the Euclidean distance between points, 
or the computed Euclidean distances may be modified in 
some way (e.g. applying a factor or non-linear scaling). In 
this case, the program will skip the computation, and use 
the given data frame, passed as a parameter. For example: 
“percolate(data, distance_table, 40,  2, 1, , 1000)”

Note that the various other parameters are still needed for 
the cluster computation, with the exception of the limit 
value, which is irrelevant.

https://doi.org/10.17605/OSF.IO/7EXTC
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The program now generates the clusters for each radius 
value required, starting at the largest radius value. The 
radius values to be used are computed from the upper and 
lower radius values, decremented by the given step value. 
In this example, the values start at 40 and decrement to 
2, with a step value of 1; all values are in km. This data is 
stored for use by the mapping function, in the working 
directory. For each radius value, data is extracted from the 
distance table, including only those point-pairs where the 
inter-point distance <= the current radius value, creating 
a sub-matrix of the original point data set. This sub-matrix 
can be considered as an edge list for a graph.

The following R functions from library ‘igraph’ are then 
applied to this sub-matrix as follows:

graph_edgelist() – creates a graph from the sub-matrix, 
with directed=TRUE to count the edges only once.

clusters() – identifies the clusters in the graph and gener-
ates a unique identity for each. This identity is then bound 
to each point (i.e. graph vertex) using the V() function. 

A table is created indexed by the given point identity 
(PlcIndex), with a column for each computed radius 
value, containing the cluster identity for that radius value 
(assuming it is a member of a cluster, else it is NULL). As 
the computation progresses, columns are added to this  
table. This table is stored as “member_cluster_by_radius.csv”.

This table is then processed to generate analytics, so that 
for each radius value, the number of clusters, the maxi-
mum, mean and median number of points per cluster 
are all computed and stored in a file called “analysis_by_
radius.csv”.

These tables are stored in the analysis results directory, for 
use by the other routines as well as for any desired addi-
tional processing that the user may undertake.

If required the clusters can be mapped using the 
mapClusters() function. 

Mapping Clusters
mapClusters(shape, map_name, source_file_name)
shape – an imported shape file, read using 
readOGR() – note this requires the rgdal library, e.g.  
“Namibia.shp”.
map_name – to be printed at the head of the maps, e.g. 
“Archaeological sites in Namibia”.
source_file_name – to be printed at the bottom of the 
map as a reference to the source data used to generate the 
cluster maps, e.g. “point_data_Namibia.v4”.
dpi – the resolution for the maps, defaults to 300. Higher 
resolution may be required for publications, for example, 
or lower values for exploratory plots.

Using the example parameters, the call would be:
“mapClusters(shape,”Archaeological sites in Namibia”, 
“point_data_Namibia.v4”).

The radius values are taken from the file generated by the 
percolate() function, to ensure consistency.

The map projection is extracted from the shape file and 
applied to the maps generated. This means the input 
point data needs to be in the same coordinate and projec-
tion system as the background map. A base map is first 
generated with all the points overlaying the shape file, 
plotting all points as a basic check. Then, for each radius 
value a cluster map is generated; all points are plotted as a 
small cross in pale grey, and then overlaid with the points 
coloured according to the rank of their cluster. The largest 
15 clusters are coloured, red for the largest, blue for the 
next and so on. For clusters outside this grouping a mid-
grey is used. Noise, that is points that are not within a clus-
ter, are not overlaid and remain as a small grey cross. All 
the maps are stored in the /map directory. png is used as 
the map format, being highly portable and without using 
compression.

The final step, if required, is to plot the statistics for the 
data. 

Cluster Analytics
plotClustFreq(source_file_name) 
For example:
plotClustFreq(“point_data_Namibia.v4”)

All of the data required is taken from the file “analysis_by_
radius.csv” in the /analysis results directory. The source file 
name is passed as a parameter for inclusion in the plots. 
These plots, similar to that in Figure 2, are generated as 
png files and stored in the /analysis_results directory.

The three functions are provided separately, to more 
quickly identify issues with data, maps and formats, with-
out having to run the entire suite each time. 
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